

Introduction

Writing modular applications is without doubt very important in software

engineering. Being able to split a problem into smaller parts and put them back

together to build large applications is an essential concept. It allows us to build

software no matter the amount of complexity involved. In fact, composability has

been one of the core principles of ZIO from the very beginning. So, for getting a good

grasp on how great ZIO is for modularity, this document will be about writing a

Tic-Tac-Toe application using the ZLayer data type.

Here is what you will learn:

● What the structure of a Service is as suggested by ZIO.

● ZIO data types for writing modular applications: ZEnvironment and ZLayer.

● ZLayer type aliases.

● How to organize a ZIO application around ZLayers.

● How to create and combine ZLayers

● How to organize ZIO tests and mocks around ZLayers.

● How to reduce boilerplate when working with ZLayers.

● How to automatically generate a diagram of your application’s dependency

graph.

Design of the Tic-Tac-Toe game

Before implementing the Tic-Tac-Toe game, let’s take a look at the design

considerations we should take into account:

● It should be a command-line application, so the game should be rendered

into the console and the user should interact via text commands.

● The application should be divided into three modes, where amode is defined

by its state and a list of commands available to the user. These modes should

be:Confirm Mode: This mode should just await user confirmation, in the form

of yes/no commands.

1

○ Menu Mode: This mode should allow the user to start, resume or quit a

game.

○ Game Mode: This mode should implement the Game Logic itself and

allow the user to play against an Opponent AI.

● Our program should read from the Terminal, modify the state accordingly and

write to the Terminal in a Loop.

● We’d also like to clear the console before each frame.

We will create a separate service for each of these concerns. Each service will depend

on other Services as depicted in the image below:

A deep look into modular applications with ZIO

As you may already know, ZIO is designed around three type parameters:

ZIO[-R, +E, +A]

You may also remember that a nice mental model of the ZIO data type is the

following:

ZEnvironment[R] => Either[E, A]

This means a ZIO effect needs an environment of type ZEnvironment[R] to run (we

will discuss in a following section in more detail about this ZEnvironment type),

2

hence we need to fulfill this requirement in order to make the effect runnable. More

concretely, this ZEnvironment[R]type represents a dependency on a service or

several services that are needed for running the effect. Therefore, let’s now discuss

how Services are defined in ZIO (by the way, if you need a more in-depth

introduction to ZIO, you can take a look at this article in the Scalac blog)

About Services in ZIO

As mentioned in the ZIO documentation page: “A service is a group of functions that

deals with only one concern. Keeping the scope of each service limited to a single

responsibility improves our ability to understand code, in that we need to focus only

on one topic at a time without juggling too many concepts together in our head”.

The idea is that ZIO allows us to define services and use them to create different

application layers that rely on each other. This means each layer depends on the

layers immediately below it, although it doesn’t know anything about their

implementation details. This is a really powerful concept, because it improves

composability and testability (because you can easily change each of the service’s

implementations without affecting other layers).

Now, if you are thinking about how to define these services, ZIO provides us with a

nice recipe to follow when defining a new service. This recipe should be familiar to

object-oriented programmers:

3

https://scalac.io/blog/introduction-to-programming-with-zio-functional-effects/
https://zio.dev/reference/service-pattern/introduction#defining-services-in-zio

Don’t worry if this all seems too abstract at the moment, because we are going to be

applying this recipe to implement the Tic-Tac-Toe application later. The only

important thing for now is to get to know ZLayer, a very important data type

mentioned in this recipe, and which is related to another very important one:

ZEnvironment. So let’s discuss those now.

4

The ZEnvironment data type

As mentioned in the ZIO documentation page, a ZEnvironment[R] is a built-in

type-level map for the ZIO data type which is responsible for maintaining the

environment of a ZIO effect. The ZIO data type uses this map (you can think of it as a

Map[ServiceType, ServiceImplementation]) to maintain all the environmental

services and their implementations.

It’s important to mention that ZEnvironment replaces the old Has data-type of ZIO

1.0, which wasn't very user-friendly. Also, ZEnvironment is now subsumed into the

ZIO data type itself, which improves its usability even further.

A little example on how ZEnvironment is used

Let’s now see a very simple example of how ZEnvironment can be used. Let’s say we

have a getCurrentUser effect that requires some services (Logging and HttpClient)

from the environment:

val getCurrentUser: URIO[Logging with HttpClient, User] = ???

Our services are defined like this:

trait Logging // Service interface

final case class LoggingLive() extends Logging // Service implementation

trait HttpClient

final case class HttpClientLive() extends HttpClient

5

https://zio.dev/reference/contextual/zenvironment

So, in order for ZIO to be able to execute the getCurrentUser effect, we need to

provide the dependencies it needs. For that, we first need to create a ZEnvironment

containing all the required dependencies:

val env: ZEnvironment[Logging with HttpClient] =

ZEnvironment(LoggingLive(), HttpClientLive())

Now, we can provide this environment to getCurrentUser, by calling

ZIO#provideEnvironment:

val getCurrentUserWithEnv: UIO[User] = getCurrentUser.provideEnvironment(env)

And now, we have a ZIO effect that does not require any environment, because we

have provided all the required dependencies, and ZIO will be able to execute it.

Now a final word about ZEnvironment, and it’s that normally you won’t need to work

directly with it. Because there’s a more powerful data type that you can use instead

to provide required dependencies to a ZIO effect: ZLayer.

The ZLayer data type

The ZLayer data type is an immutable value which contains a pure description for

building a ZEnvironment[ROut], starting from a value RIn, possibly producing an

error E during creation:

ZLayer[-RIn, +E, +ROut]

If you think about it, ZLayer is a bit like a class constructor. However, while a class

constructor describes how you build objects of some class, it doesn't describe the

process as a value, but ZLayer does! So:

6

● A class constructor is not a value in the same way a statement is not a value

● As ZIO effects turn statements into values, ZLayers turn constructors into

values

● ZLayers can also describe the destruction process of a service, not just its

construction!

Because ZLayers are values, they are highly compositional, and can be combined in

two fundamental ways:

● Horizontally: To build a layer that has the requirements and provides the

capabilities of both layers, we use the ++ operator.

● Vertically: In this case, the output of one layer is used as the input for the

subsequent layer, resulting in a layer with the requirement of the first and the

output of the second layer. We use the >>> operator for this.

Again, don't panic if this doesn’t make too much sense for you at the moment,

because we are going to be applying both the horizontal and vertical compositions

when we implement the Tic-Tac-Toe application and everything will become clearer.

Why ZLayer?

Now you may be thinking: Do we really need ZLayer? Isn't ZEnvironment enough to

provide dependencies to a ZIO effect?

The answer is that, in small applications with a limited number of services,

ZEnvironment would be enough. However, in real life a lot of applications consist of

thousands or millions of lines of code, contain several different services and have

different test and production implementations for each service. Manually wiring all of

these services becomes a tedious exercise, and it’s an opportunity for people to make

the samemistakes over and over again.

7

What you want instead is some automatic Dependency Injection mechanism, which

gives you structure, lots of it, so you basically make it very simple for people to add

new services, new implementations, and enforce best practices being followed.

That's what ZLayer is all about! It helps you to structure large-scale applications in a

way that scales.

By the way, best practices that are automatically enforced by ZLayer (you don’t even

need to think about them!) include the following:

● When you're wiring up your application dependency graph, you should try to

do that in parallel, to reduce the bootstrap load time. Obviously, you can't wire

up your whole dependency graph in parallel because sometimes you have

sequential parts, and ZLayer knows exactly which parts can be constructed in

parallel and which parts sequentially.

● Also, whenever any component of your application is no longer being used,

you should safely deallocate resources, such as open file descriptors or

network connections.

ZLayer type aliases

Finally, it’s worth mentioning that ZIO provides some type aliases for the ZLayer data

type which are very useful when representing some common use cases. The good

news is that the logic for defining these type aliases is practically the same as that

applied for defining the ZIO type aliases. Here’s the complete list:

● TaskLayer[+ROut] = ZLayer[Any, Throwable, ROut]: This means a

TaskLayer[ROut] is a ZLayer that:

○ Doesn’t require an input (that’s why the RIn type is replaced by Any)

○ Can fail with a Throwable

○ Can succeed with an ROut

● ULayer[+ROut] = ZLayer[Any, Nothing, ROut]: This means a ULayer[ROut] is a

ZLayer that:

8

○ Doesn’t require an input

○ Can’t fail

○ Can succeed with an ROut

● RLayer[-RIn, +ROut] = ZLayer[RIn, Throwable, ROut]: This means an RLayer[RIn,

ROut] is a ZLayer that:

○ Requires an input RIn

○ Can fail with a Throwable

○ Can succeed with an ROut

● Layer[+E, +ROut] = ZLayer[Any, E, ROut]: This means a Layer[E, ROut] is a

ZLayer that:

○ Doesn’t require an input

○ Can fail with an E

○ Can succeed with an ROut

● URLayer[-RIn, +ROut] = ZLayer[RIn, Nothing, ROut]: This means a URLayer[RIn,

ROut] is a ZLayer that:

○ Requires an input RIn

○ Can’t fail

○ Can succeed with an ROut

Now, if you are wondering how to create and use ZLayers, stay tuned because we are

going to be seeing how easy that is to do in the next section.

Implementing the Tic-Tac-Toe application

It’s time to implement the Tic-Tac-Toe application using the ZIO Service Pattern with

ZLayer! In the following sections we are going to be analyzing the source code of

some of the services (the most representative ones). You can see the complete

source code in the jorge-vasquez-2301/zio-zlayer-tictactoe repository.

By the way, this will be the directory structure of the project:

9

https://github.com/jorge-vasquez-2301/zio-zlayer-tictactoe

So, each ZIO service will be implemented as a package containing:

● Service interface as a trait.

● Service implementations as case classes.

Speaking of which, these services reflect the initial design presented above. We also

have a domain package containing domain objects, and the TicTacToe main object.

We also need to add some dependencies to our build.sbt (atto is used for parsing

commands):

val scalaVer = "2.13.10"

val attoVersion = "0.7.2"

val zioVersion = "2.0.12"

val zioMockVersion = "1.0.0-RC11"

10

https://tpolecat.github.io/atto/

lazy val compileDependencies = Seq(

"dev.zio" %% "zio" % zioVersion,

"dev.zio" %% "zio-macros" % zioVersion,

"org.tpolecat" %% "atto-core" % attoVersion

) map (_ % Compile)

lazy val testDependencies = Seq(

"dev.zio" %% "zio-test" % zioVersion,

"dev.zio" %% "zio-test-sbt" % zioVersion,

"dev.zio" %% "zio-mock" % zioMockVersion

) map (_ % Test)

lazy val settings = Seq(

name := "zio-zlayer-tictactoe",

version := "4.0.0",

scalaVersion := scalaVer,

scalacOptions += "-Ymacro-annotations",

libraryDependencies ++= compileDependencies ++ testDependencies,

testFrameworks := Seq(new TestFramework("zio.test.sbt.ZTestFramework"))

)

lazy val root = (project in file("."))

.settings(settings)

Please notice that we are working with Scala 2.13.10 and that we will need to enable

the -Ymacro-annotations compiler flag so we will be able to use some of the macros

provided by zio-macros. If you want to work with Scala < 2.13, you’ll need to add the

macro paradise compiler plugin:

compilerPlugin(("org.scalamacros" % "paradise" % "2.1.1") cross CrossVersion.full)

11

Implementing the GameCommandParser Service

Here we have the service interface of the GameCommandParser service, in the

parser/game/GameCommandParser.scala file:

trait GameCommandParser {

def parse(input: String): IO[AppError, GameCommand]

}

As you can see, the service interface is just a simple trait, which exposes some

capabilities, such as the parse method that could fail with an AppError or succeed

with a GameCommand. Something very important I want to mention here is that, in

general, when writing a service interface you should never have methods that return

ZIO effects which require an environment. The reasons for this are very well

explained in this article about The Three Laws of ZIO Environment from the ZIO

documentation.

Now that we have written the service interface, we need to define the possible

implementations. For now, we’ll have just a single implementation, which will be a

case class named GameCommandParserLive, in the

parser/game/GameCommandParserLive.scala file:

final case class GameCommandParserLive() extends GameCommandParser {

def parse(input: String): IO[AppError, GameCommand] =

ZIO.from(command.parse(input).done.option).orElseFail(ParseError)

private lazy val command: Parser[GameCommand] =

choice(menu, put)

private lazy val menu: Parser[GameCommand] =

12

https://zio.dev/reference/service-pattern/the-three-laws-of-zio-environment/

(string("menu") <~ endOfInput) >| GameCommand.Menu

private lazy val put: Parser[GameCommand] =

(int <~ endOfInput).flatMap { value =>

Field

.make(value)

.fold(err[GameCommand](s"Invalid field value: $value")) { field =>

ok(field).map(GameCommand.Put)

}

}

}

As demonstrated, the way to write a service implementation is exactly the same as if

we were doing Object-Oriented Programming (OOP)! Just create a new case class

which implements the service definition (in this case, the GameCommandParser

trait). And, because GameCommandParserLive does not have dependencies on any

other services, it has an empty constructor.

Next, we need to create a ZLayer that describes how to construct a

GameCommandParserLive instance. To do that, just add the following to the

GameCommandParserLive companion object:

object GameCommandParserLive {

val layer: ULayer[GameCommandParser] = ZLayer.succeed(GameCommandParserLive())

}

You can appreciate now how easy it is to create a ZLayer! We just need to call the

ZLayer.succeed method, providing an instance of GameCommandParserLive. In this

case, what’s returned is a ZLayer[Any, Nothing, GameCommandParser], which is the

same as ULayer[GameCommandParser]. This means the returned ZLayer:

13

● Doesn’t have any dependencies.

● Can’t fail on creation.

● Returns a GameCommandParser.

We are almost done with our GameCommandParser service, we only need to add

some accessors, which are methods that help us to build programs without

bothering about the implementation details of the service. We put these accessors

in the GameCommandParser companion object:

object GameCommandParser {

def parse(input: String): ZIO[GameCommandParser, AppError, GameCommand] =

ZIO.serviceWithZIO[GameCommandParser](_.parse(input))

}

The GameCommandParser.parse accessor uses ZIO.serviceWithZIO to create an

effect that requires GameCommandParser as environment and just calls the parse

method on it. In general, writing accessorswill always follow this same pattern.

Now, the good news here is that actually we don’t need to write these accessors by

ourselves, we can use the @accessible annotation instead (which comes from the

zio-macros library) on the GameCommandParser trait. By doing this, accessors will

be automatically generated for us:

import zio.macros._

@accessible

trait GameCommandParser {

def parse(input: String): IO[AppError, GameCommand]

}

14

Implementing the GameMode Service

Here we have the service interface of the GameMode Service in

mode/game/GameMode.scala:

@accessible

trait GameMode {

def process(input: String, state: State.Game): UIO[State]

def render(state: State.Game): UIO[String]

}

And, we have the Service Implementation in mode/game/GameModeLive.scala:

final case class GameModeLive(

gameCommandParser: GameCommandParser,

gameView: GameView,

opponentAi: OpponentAi,

gameLogic: GameLogic

) extends GameMode {

def process(input: String, state: State.Game): UIO[State] =

if (state.result != GameResult.Ongoing) ZIO.succeed(State.Menu(None, MenuFooterMessage.Empty))

else if (isAiTurn(state))

opponentAi

.randomMove(state.board)

.flatMap(takeField(_, state))

else

gameCommandParser

.parse(input)

.flatMap {

case GameCommand.Menu => ZIO.succeed(State.Menu(Some(state), MenuFooterMessage.Empty))

case GameCommand.Put(field) => takeField(field, state)

}

.orElseSucceed(state.copy(footerMessage = GameFooterMessage.InvalidCommand))

private def isAiTurn(state: State.Game): Boolean =

(state.turn == Piece.Cross && state.cross == Player.Ai) ||

(state.turn == Piece.Nought && state.nought == Player.Ai)

15

private def takeField(field: Field, state: State.Game): UIO[State] =

(for {

updatedBoard <- gameLogic.putPiece(state.board, field, state.turn)

updatedResult <- gameLogic.gameResult(updatedBoard)

updatedTurn <- gameLogic.nextTurn(state.turn)

} yield state.copy(

board = updatedBoard,

result = updatedResult,

turn = updatedTurn,

footerMessage = GameFooterMessage.Empty

)).orElseSucceed(state.copy(footerMessage = GameFooterMessage.FieldOccupied))

def render(state: State.Game): UIO[String] = {

val player = if (state.turn == Piece.Cross) state.cross else state.nought

for {

header <- gameView.header(state.result, state.turn, player)

content <- gameView.content(state.board, state.result)

footer <- gameView.footer(state.footerMessage)

} yield List(header, content, footer).mkString("\n\n")

}

}

Notice how the way of defining this GameMode Service is very similar to the

definition of GameCommandParser. However, there is a difference:

GameCommandParserLive didn’t have any dependencies provided through the class

constructor, but GameModeLive has four dependencies! Please notice we are using

interfaces for requiring these dependencies, not implementations, so we are

following a very important principle from OOP: Program to interfaces, not

implementations!

So OK, how do we now create a ZLayer for GameModeLive? We can do it like this:

object GameModeLive {

val layer: URLayer[

GameCommandParser with GameView with OpponentAi with GameLogic,

GameMode

] = ZLayer.fromFunction(GameModeLive(_, _, _, _))

}

16

We just need to call the ZLayer.fromFunction method on the GameModeLive

constructor to lift it to a ZLayer. In this case, what’s returned is a

ZLayer[GameCommandParser with GameView with OpponentAi with GameLogic,

Nothing, GameCommandParser], which is the same as

URLayer[GameCommandParser with GameView with OpponentAi with GameLogic,

GameCommandParser]. This means the returned ZLayer:

● Depends on GameCommandParser, GameView, OpponentAi and GameLogic.

● Can’t fail on creation.

● Returns a GameMode.

Creating more powerful ZLayers

In this section I want to mention that a more powerful method of building ZLayers is

by calling ZLayer.fromZIO (equivalent to ZLayer.apply), that allows us to describe

more complex processes for building Services. Just as a example, let’s say we want to

print a message to the console when instantiating a GameModeLive, we could do

that like this:

object GameModeLive {

val layer: URLayer[

GameCommandParser with GameView with OpponentAi with GameLogic,

GameMode

] =

ZLayer {

for {

gameCommandParser <- ZIO.service[GameCommandParser]

gameView <- ZIO.service[GameView]

opponentAi <- ZIO.service[OpponentAi]

gameLogic <- ZIO.service[GameLogic]

_ <- Console.printLine("Instantiating GameModeLive").orDie

} yield GameModeLive(gameCommandParser, gameView, opponentAi, gameLogic)

}

17

}

And we can create ZLayers that do even more powerful things such as opening

resources (like files), by calling ZLayer.scoped, which allows us to create a ZLayer from

a Scoped ZIO effect (I won’t explain all the details about Scoped ZIO effects here, let’s

just say that they are the replacement of the old ZManaged data type from ZIO 1.0, so

they basically allow to safely allocate and deallocate resources. If you want more

details, you can take a look at the ZIO documentation).

Let’s say now, just as an example, that when instantiating GameModeLive the

message we print to the console has to come from a file, instead of being hardcoded.

We can do this like:

val layer: URLayer[

GameCommandParser with GameView with OpponentAi with GameLogic,

GameMode

] = {

import scala.io.Source

val getSource: URIO[Scope, BufferedSource] =

ZIO.acquireRelease(ZIO.attemptBlockingIO(Source.fromFile("message.txt")).orDie)(source =>

ZIO.attemptBlockingIO(source.close).orDie

)

ZLayer.scoped {

for {

gameCommandParser <- ZIO.service[GameCommandParser]

gameView <- ZIO.service[GameView]

opponentAi <- ZIO.service[OpponentAi]

gameLogic <- ZIO.service[GameLogic]

source <- getSource

_ <- Console.printLine(source.mkString("\n")).orDie

} yield GameModeLive(gameCommandParser, gameView, opponentAi, gameLogic)

}

}

18

https://zio.dev/reference/resource/scope/

So now we have a very powerful ZLayer that doesn’t just know how to instantiate a

GameModeLive, but it also knows how to safely deallocate resources (in this case, the

message.txt file that gets read) when destroying the instance!

Implementing the TicTacToe main object

The TicTacToe object is the entry point of our application:

object TicTacToe extends ZIOAppDefault {

val program: URIO[RunLoop, Unit] = {

def loop(state: State): URIO[RunLoop, Unit] =

RunLoop

.step(state)

.some

.flatMap(loop)

.ignore

loop(State.initial)

}

val run = program.provideLayer(environmentLayer)

private lazy val environmentLayer: ULayer[RunLoop] = {

val confirmModeDeps: ULayer[ConfirmCommandParser with ConfirmView] =

ConfirmCommandParserLive.layer ++ ConfirmViewLive.layer

val menuModeDeps: ULayer[MenuCommandParser with MenuView] =

MenuCommandParserLive.layer ++ MenuViewLive.layer

val gameModeDeps: ULayer[GameCommandParser with GameView with GameLogic with OpponentAi] =

GameCommandParserLive.layer ++ GameViewLive.layer ++ GameLogicLive.layer ++ OpponentAiLive.layer

val confirmModeNoDeps: ULayer[ConfirmMode] = confirmModeDeps >>> ConfirmModeLive.layer

val menuModeNoDeps: ULayer[MenuMode] = menuModeDeps >>> MenuModeLive.layer

val gameModeNoDeps: ULayer[GameMode] = gameModeDeps >>> GameModeLive.layer

val controllerDeps: ULayer[ConfirmMode with GameMode with MenuMode] =

confirmModeNoDeps ++ gameModeNoDeps ++ menuModeNoDeps

19

val controllerNoDeps: ULayer[Controller] = controllerDeps >>> ControllerLive.layer

val runLoopNoDeps = (controllerNoDeps ++ TerminalLive.layer) >>> RunLoopLive.layer

runLoopNoDeps

}

}

Some important points to notice in the code above:

● TicTacToe extends ZIOAppDefault

● The program value defines the logic of our application, and it depends on the

RunLoop Service, which in turn depends on the rest of the services of our

application.

● The run method, that must be implemented by every ZIO application,

provides a prepared environment for making our program runnable. To do

that, it executes program.provideLayer to provide the prepared ZLayer

(defined by the environmentLayer value.

So let’s now analyze step by step the prepareEnvironment implementation. To do

that, let’s take another look at our initial design diagram:

The final goal is to provide a RunLoop layer implementation to our TicTacToe.run

function. For that, we’ll follow a bottom-up approach.

20

If we look at the bottom of the updated diagram, we can see there are some

opportunities for doing horizontal composition:

● ConfirmCommandParser and ConfirmView

● MenuCommandParser and MenuView

● GameCommandParser, GameView, GameLogic and OpponentAi

So, we have the following in code:

val confirmModeDeps: ULayer[ConfirmCommandParser with ConfirmView] =

ConfirmCommandParserLive.layer ++ ConfirmViewLive.layer

val menuModeDeps: ULayer[MenuCommandParser with MenuView] =

MenuCommandParserLive.layer ++ MenuViewLive.layer

val gameModeDeps: ULayer[GameCommandParser with GameView with GameLogic with OpponentAi] =

GameCommandParserLive.layer ++ GameViewLive.layer ++ GameLogicLive.layer ++ OpponentAiLive.layer

And graphically:

Nice! We can now collapse one more level applying a vertical composition:

21

val confirmModeNoDeps: ULayer[ConfirmMode] = confirmModeDeps >>> ConfirmModeLive.layer

val menuModeNoDeps: ULayer[MenuMode] = menuModeDeps >>> MenuModeLive.layer

val gameModeNoDeps: ULayer[GameMode] = gameModeDeps >>> GameModeLive.layer

And now we have:

Next, we can apply a horizontal composition again:

val controllerDeps: ULayer[ConfirmMode with GameMode with MenuMode] =

confirmModeNoDeps ++ gameModeNoDeps ++ menuModeNoDeps

The next step will be (spoiler alert): Vertical composition!

val controllerNoDeps: ULayer[Controller] = controllerDeps >>> ControllerLive.layer

22

And finally, we can apply horizontal and vertical composition in just one step, and

we’ll be done:

val runLoopNoDeps = (controllerNoDeps ++ TerminalLive.layer) >>> RunLoopLive.layer

That’s it! We now have a prepared environment that we can provide to our program

to make it runnable, by calling ZIO#provideLayer:

val run = program.provideLayer(environmentLayer)

Now, just as a mental exercise and to better understand the relationship between

the ZEnvironment and ZLayer data types, let’s see how to provide a ZLayer to a ZIO

effect, but using ZIO#provideEnvironment instead:

val run =

for {

zEnvironment <- environmentLayer.build

_ <- program.provideEnvironment(zEnvironment)

23

} yield ()

Here you can see, in essence, what happens under the hood when you call

ZIO#provideLayer: The given environmentLayer, which is just a pure description of

how to construct the dependencies of our application, gets built by calling

ZLayer#build, this returns a ZIO effect which succeeds with a ZEnvironment, which

in turn can be provided to our program by calling ZIO#provideEnvironment.

Magically reducing boilerplate in the TicTacToe object

In the previous section, we have seen how to prepare the environment for our

application by combining ZLayers, using horizontal and vertical composition, and we

needed to do that manually.

Yes, I know what you must be thinking now: I thought the whole purpose of using

ZLayer instead of ZEnvironment for providing required dependencies to a ZIO effect

was that we would not need to do manual wiring of those dependencies, but the

whole process still looks pretty manual to me!

Well, the good news is that in ZIO 2.0 there is actually an automatic way of wiring all

the ZLayers of our application that I haven’t shown you yet (ZIO 1.0 does not include

this feature, so in that case you would need to use an external library written by Kit

Langton, called ZIO Magic).

OK, so now let’s see how ZIO 2.0 can help us to reduce the boilerplate when

preparing our environmentLayer:

private val environmentLayer: ULayer[RunLoop] =

ZLayer.make[RunLoop](

ControllerLive.layer,

GameLogicLive.layer,

ConfirmModeLive.layer,

GameModeLive.layer,

24

https://github.com/kitlangton/zio-magic

MenuModeLive.layer,

OpponentAiLive.layer,

ConfirmCommandParserLive.layer,

GameCommandParserLive.layer,

MenuCommandParserLive.layer,

RunLoopLive.layer,

TerminalLive.layer,

ConfirmViewLive.layer,

GameViewLive.layer,

MenuViewLive.layer

)

Wow! A great improvement, don't you think? In ZIO 2.0 you just need to call

ZLayer.make with a type parameter indicating the type of ZLayer you want to

construct (in this case a ZLayer that returns a RunLoop), and after that you just need

to provide all the layers that have to be wired, in any order you want, and that’s it! You

don’t need to think about horizontal and vertical composition ever again! ZIO 2.0 will

take care of that for you.

By the way, a nice feature of ZIO 2.0 is that, if you add a ZLayer.Debug.mermaid layer

to the ZLayer.make call, like this:

private val environmentLayer: ULayer[RunLoop] =

ZLayer.make[RunLoop](

ControllerLive.layer,

GameLogicLive.layer,

ConfirmModeLive.layer,

GameModeLive.layer,

MenuModeLive.layer,

OpponentAiLive.layer,

ConfirmCommandParserLive.layer,

GameCommandParserLive.layer,

MenuCommandParserLive.layer,

25

RunLoopLive.layer,

TerminalLive.layer,

ConfirmViewLive.layer,

GameViewLive.layer,

MenuViewLive.layer,

ZLayer.Debug.mermaid

)

You’ll get a nice tree representation of the dependency graph at compile time,

including a Mermaid.js link containing a nice Mermaid diagram that you can even

export as an image!

And as a bonus, it turns out we can still reduce some boilerplate. Thanks to ZIO 2.0

we don’t really need to keep environmentLayer as a separate variable anymore. Let’s

26

see how that would work, the original run method that uses environmentLayer looks

like this:

val run = program.provideLayer(environmentLayer)

We called ZIO#provideLayer to provide the prepared environment to our program.

What we can now do instead, is the following:

val run =

program

.provide(

ControllerLive.layer,

GameLogicLive.layer,

ConfirmModeLive.layer,

GameModeLive.layer,

MenuModeLive.layer,

OpponentAiLive.layer,

ConfirmCommandParserLive.layer,

GameCommandParserLive.layer,

MenuCommandParserLive.layer,

RunLoopLive.layer,

TerminalLive.layer,

ConfirmViewLive.layer,

GameViewLive.layer,

MenuViewLive.layer

)

We can call the ZIO#provide method directly in our program to provide the required

ZLayers in any order.

27

Writing the tests

As we have successfully implemented the TicTacToe application using ZLayers, let’s

now write the application’s tests. We’ll cover just some of them here, and of course

you can take a look at the complete tests in the

jorge-vasquez-2301/zio-zlayer-tictactoe repository.

Writing GameCommandParserSpec

Here’s the test suite for GameCommandParser:

object GameCommandParserSpec extends ZIOSpecDefault {

def spec =

suite("GameCommandParser")(

suite("parse")(

test("menu returns Menu command") {

for {

result <- GameCommandParser.parse("menu").either.right

} yield assertTrue(result == GameCommand.Menu)

},

test("number in range 1-9 returns Put command") {

val results = ZIO.foreach(1 to 9) { n =>

for {

result <- GameCommandParser.parse(s"$n").either.right

expectedField <- ZIO.from(Field.make(n))

} yield assertTrue(result == GameCommand.Put(expectedField))

}

results.flatMap(results => ZIO.from(results.reduceOption(_ && _)))

},

test("invalid command returns error") {

check(invalidCommandsGen) { input =>

for {

result <- GameCommandParser.parse(input).either.left

} yield assertTrue(result == ParseError)

}

}

)

).provideLayer(GameCommandParserLive.layer)

private val validCommands = List(1 to 9)

private val invalidCommandsGen = Gen.string.filter(!validCommands.contains(_))

}

28

https://github.com/jorge-vasquez-2301/zio-zlayer-tictactoe

As you can see, all of the tests depend on the GameCommandParser service,

therefore we will need to provide it so zio-test is able to run the tests. We can now

provide the GameCommandParserLive implementation to the whole suite by using

Spec#provideLayer.

Writing TerminalSpec

Let’s take a look at the spec:

object TerminalSpec extends ZIOSpecDefault {

def spec =

suite("Terminal")(

test("getUserInput delegates to Console") {

check(Gen.string) { input =>

for {

_ <- TestConsole.feedLines(input)

result <- Terminal.getUserInput

} yield assertTrue(result == input)

}

},

test("display delegates to Console") {

check(Gen.string) { frame =>

for {

result <- Terminal.display(frame)

} yield assertTrue(result == ())

}

}

).provideLayer(TerminalLive.layer) @@ TestAspect.silent

}

Some important things worth noting:

29

● Each test needs a TerminalLive environment to run, and TerminalLive uses the

standard Console service from ZIO to be able to print texts to the console.

● What’s great about zio-test is that it doesn’t use the live implementations of

standard ZIO services such as Console, but test implementations instead. So,

for instance, TestConsole doesn’t just print texts to the console when you call

Console.printLine, but it also stores them to a TestConsole.output vector which

you can use to make assertions. Also, you can simulate user input by calling

TestConsole.feedLines.

● Something very nice as well is that you can tweak the behavior of TestConsole

such that texts are not actually printed to the console but just stored in a

vector. For that, you can apply an aspect to your test suite, more specifically

TestAspect.silent

Writing GameModeSpec

In this case, let’s concentrate on just one test instead of the whole suite:

test("returns state with added piece and turn advanced to next player if field is unoccupied") {

val gameCommandParserMock: ULayer[GameCommandParser] =

GameCommandParserMock.Parse(Assertion.equalTo("put 6"), Expectation.value(GameCommand.Put(Field.East)))

val gameLogicMock: ULayer[GameLogic] =

GameLogicMock.PutPiece(

Assertion.equalTo((gameState.board, Field.East, Piece.Cross)),

Expectation.value(pieceAddedEastState.board)

) ++

GameLogicMock

.GameResult(Assertion.equalTo(pieceAddedEastState.board), Expectation.value(GameResult.Ongoing)) ++

GameLogicMock.NextTurn(Assertion.equalTo(Piece.Cross), Expectation.value(Piece.Nought))

for {

result <- GameMode

.process("put 6", gameState)

.provide(

gameCommandParserMock,

GameViewMock.empty,

OpponentAiMock.empty,

gameLogicMock,

GameModeLive.layer

)

} yield assertTrue(result == pieceAddedEastState)

}

30

The above test is for GameMode.process, and GameMode depends on several

Services: GameCommandParser, GameView, OpponentAi and GameLogic. So, to be

able to run the test, we can provide mocks for those Services by using the zio-mock

library, and that’s what’s precisely happening in the above lines. First, we write a

mock for GameCommandParser:

import zio.mock._

val gameCommandParserMock: ULayer[GameCommandParser] =

GameCommandParserMock.Parse(Assertion.equalTo("put 6"), Expectation.value(GameCommand.Put(Field.East)))

As you may have realized, this line depends on a GameCommandParserMock object,

and we are stating that when we call GameCommandParser.parse with an input

equal to “put 6”, it should return a value of GameCommand.Put(Field.East). By the

way, the GameCommandParserMock is defined in the mocks.scala file:

import zio.mock._

@mockable[GameCommandParser]

object GameCommandParserMock

As shown above, we are now using the @mockable annotation that is included in the

zio-mock library. This annotation is a really nice macro that generates a lot of

boilerplate code for us automatically, otherwise we would need to write it ourselves.

By the way, there’s something else of interest: If we take a closer look at this

expression:

GameCommandParserMock.Parse(Assertion.equalTo("put 6"), Expectation.value(GameCommand.Put(Field.East)))

It returns a value of type Expectation[GameCommandParser], but we are storing it as

a ULayer[GameCommandParser], and there are no compilation errors… The reason is

31

that ZIO provides an implicit function Expectation#toLayer, which converts an

Expectation[R] to a ULayer[R]. This means that, because mocks can be defined as

ZLayers, we can easily provide them to ZIO effects!

I won’t go into more details about how ZIO mocks work. However if you do want to

knowmore about this, you can take a look at the ZIO documentation page.

Then we have to write a mock for GameLogic:

val gameLogicMock: ULayer[GameLogic] =

GameLogicMock.PutPiece(

Assertion.equalTo((gameState.board, Field.East, Piece.Cross)),

Expectation.value(pieceAddedEastState.board)

) ++

GameLogicMock

.GameResult(Assertion.equalTo(pieceAddedEastState.board), Expectation.value(GameResult.Ongoing)) ++

GameLogicMock.NextTurn(Assertion.equalTo(Piece.Cross), Expectation.value(Piece.Nought))

The idea here is pretty much the same as how we defined

gameCommandParserMock:

● The mock is defined as a ZLayer.

● We need to define a GameLogicMock object, similarly as we did above for

GameCommandParserMock.

● For combining expectations sequentially, we use the ++ operator (which is just

an alias for the Expectation#andThen method).

Next, we should define mocks for GameView and OpponentAi. However, there’s a

difference. The reason is these services are not actually called by GameMode.process

(which is the function being tested), so these mocks should say that we expect them

not to be called. Thankfully, in the current zio-mock version there’s an easy way of

stating that. Basically, the only thing we need to do is to define GameViewMock and

OpponentAiMock objects as above (using the @mockable annotation), and then we

can call GameViewMock.empty and OpponentAiMock.empty to generate the mocks

we want.

32

https://zio.dev/ecosystem/officials/zio-mock/

Next, we need to provide these mocks (remember they can be treated as normal

ZLayers) for running the test:

for {

result <- GameMode

.process("put 6", gameState)

.provide(

gameCommandParserMock,

GameViewMock.empty,

OpponentAiMock.empty,

gameLogicMock,

GameModeLive.layer

)

} yield assertTrue(result == pieceAddedEastState)

Summary

In this document, you’ve learned how to write a Tic-Tac-Toe application using

ZLayers. I hope you’ve been able to appreciate the great power that ZLayer gives for

building modular and composable applications in a more accessible and

understandable way. At the same time, we have written some tests and seen how

easy it is to use test implementations of standard ZIO services (such as Console) or to

define mock environments as ZLayers that can be provided for tests to make them

executable.

You have also learned how ZIO 2.0 helps us to reduce lots of boilerplate when

preparing the environment for your applications. Thanks to that, you won’t have to

worry about horizontal and vertical composition of ZLayers anymore: you have

automatic wiring of your application’s dependency graph by default!

33

I hope the concepts related to the ZEnvironment and ZLayer data types are more

clear to you now (if they weren’t before), and that you will start using this knowledge

in your own applications to make them extremely modular and composable!

References

● GitHub repository for this document

● Introduction to Programming with ZIO Functional Effects, by Jorge Vásquez

● How to write a command-line application with ZIO, by Piotr Gołębiewski

● How to write a (completely lock-free) concurrent LRU Cache with ZIO STM, by

Jorge Vásquez

● ZIO documentation page

● atto documentation page

34

https://github.com/jorge-vasquez-2301/zio-zlayer-tictactoe
https://scalac.io/blog/introduction-to-programming-with-zio-functional-effects/
https://scalac.io/write-command-line-application-with-zio/
https://scalac.io/how-to-write-a-completely-lock-free-concurrent-lru-cache-with-zio-stm/
https://scalac.io/how-to-write-a-completely-lock-free-concurrent-lru-cache-with-zio-stm/
https://zio.dev
https://tpolecat.github.io/atto/

